With permission from some of our publishers, we have been able to put up some articles as Acrobat.pdf files for your personal research and study. You can download Adobe Reader for free if you do not already have it.
-
Zhang, X. and H. Nepf. 2024. Laboratory data linking the reconfiguration of and drag on individual plants to the velocity structure and wave dissipation over a meadow of salt marshes under waves with and without current, Earth Syst. Sci. Data, 16(2):1047-1062, https://doi.org/10.5194/essd-16-1047-2024.
-
Zhang X., C. Zhao, H. Nepf. 2024. A simple prediction of time-mean and wave orbital velocities in submerged canopy. J. Fluid Mech., 982:A3. doi:10.1017/jfm.2024.61
-
Liu, C., Y. Shan, L. He, F. Li, X. Liu, H. Nepf. 2024. Plant morphology impacts bedload sediment transport,Geo. Res. Lett. 51 (12), e2024GL108800, https://doi.org/10.1029/2024GL108800
-
Schalko, I., H. Nepf. 2024. Enhanced flow variability and morphological changes through individual wood placements on a gravel bed, Geomorph., 453, 109135, https://doi.org/10.1016/j.geomorph.2024.109135
-
Follett, E., I. Schalko, H. Nepf. 2024 Reply to comment by Poppema & Wüthrich on Momentum and energy predict the backwater rise generated by a large wood jam, Geo.Res.Lett., 51, e2024GL108808 https://doi.org/10.1029/2024GL108808
-
Schaefer, R. and H. Nepf 2024. Movement of and drag force on slender flat plates in an array exposed to combinations of unidirectional and oscillatory flow, J. Fluids and Structures,124,104044, https://doi.org/10.1016/j.jfluidstructs.2023.104044
-
Schalko, I., M. Ponce, S. Lassar, S. Schwindt., S. Haun and H. Nepf. 2024. Flow and Turbulence due to Wood Contribute to Declogging of Gravel Bed. Geophysical Research Letters, 51, e2023GL107507. https://doi.org/10.1029/2023GL107507
-
Beltrán -Burgos, M., C. Esposito, H. Nepf, M. Baustian, D. Di Leonardo. 2023. Vegetation-driven seasonal sediment dynamics in a freshwater marsh of the Mississippi River Delta. JGResearch- Biogeosciences, 128, e2022JG007143. https://doi.org/10.1029/2022JG007143
-
Deitrick A., E. Hovendon, D. Ralston and H. Nepf, 2023. The influence of vegetation-generated turbulence on deposition in emergent canopies. Front. Mar. Sci. 10:1266241.doi:10.3389/fmars.2023.1266241
-
Schalko, I., Follett, E., & Nepf, H. 2023. Impact of lateral gap on flow distribution, backwater rise, and turbulence generated by a logjam. Water Resources Research, 59, e2023WR034689. https://doi.org/10.1029/2023WR034689.
-
Xavier, M.., Janzen, J. and Nepf, H. 2023. Modeling mass removal and sediment deposition in stormwater ponds using floating treatment islands: a computational approach. Environ Sci Pollut Res 30, 112173–112183. https://doi.org/10.1007/s11356-023-30218-z
-
Lei, J., R. Schaefer, P. Colarusso, A. Novak, J. Simpson, P. Masque, H. Nepf. 2023. Spatial heterogeneity in sediment and carbon accretion rates within a seagrass meadow correlated with the hydrodynamics intensity. Science of the Total Environment 854, https://doi.org/10.1016/j.scitotenv.2022.158685
-
Xu, Y., L. Danxun, and H. Nepf. 2022. Sediment pickup rate in bare and vegetated channels. Geophys. Res. Lett., 49 e2022GL101279, https://doi.org/10.1029/2022GL101279
-
Zhang, X., P. Lin, H. Nepf. 2022. A wave damping model for flexible marsh plants with leaves considering linear to weakly non-linear wave conditions. Coastal Engineering 175:104124, https://doi.org/10.1016/j.coastaleng.2022.104124
-
Yamasaki, T., C. Walker, J. Janzen, H. Nepf 2022. Flow distribution and mass removal in floating treatment wetlands arranged in series and spanning the channel width. J. Hydro-environment Rese. 44:1-11, https://doi.org/10.1016/j.jher.2022.07.001
-
Liu, C., C. Yan, S. Sun, J. Lei, H. Nepf, and Y. Shan 2022. Velocity, turbulence, and sediment deposition in a channel partially filled with a Phragmites australis canopy. Water Resources Research, 58, e2022WR032381. https://doi.org/10.1029/2022WR032381
-
Xu, Y., C. Esposito, M. Beltrán Burgos, and H. Nepf. 2022. Competing effects of vegetation density on sedimentation in deltaic marshes. Nature Communications, 13:4641, https://doi.org/10.1038/s41467-022-32270-8
-
Zhang, X. and H. Nepf. 2022. Reconfiguration of and drag on marsh plants in combined waves and current. J. Fluids Structures, Vol. 110, 103539. https://doi.org/10.1016/j.jfluidstructs.2022.103539
-
Nepf, H., S. Puijalon, H. Capra. 2022. Organism-scale interaction with hydraulic conditions, J. Ecohydraulics, 7:1, 1-3. https://doi.org/10.1080/24705357.2022.2042919
-
Schaefer, R. and H. Nepf. 2022. Wave damping by seagrass meadows in combined wave-current conditions. Limnology and Oceanography, 67, 1554-1565. https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lno.12102
-
Schaefer, R. and H. Nepf. 2022. Flow Structure in an Artificial Seagrass Meadow in Combined Wave-Current Conditions. Front. Mar. Sci. 9:836901. https://doi.org/10.3389/fmars.2022.836901
-
Zhao, T. and H. Nepf .2021. Turbulence Dictates Bedload Transport in Vegetated Channels Without Dependence on Stem Diameter and Arrangement. Geophysical Research Letters, 48, e2021GL095316. https://doi.org/10.1029/2021GL095316
-
Featured in NSF What’s Hot in Science? https://www.nsf.gov/discoveries/disc_summ.jsp?WT.mc_id=USNSF_1&cntn_id=303772&utm_medium=email&utm_source=govdelivery
-
Zhang, X., and H. Nepf 2021. Wave damping by flexible marsh plants influenced by current. Phys.Rev.Fluids 6, 100502. https://doi.org/10.1103/PhysRevFluids.6.100502
-
Zhang, X. P. Lin, and H. Nepf 2021. A simple wave damping model for flexible marsh plants. Limnology and Oceanography 66 (12), 4182-4196. https://doi.org/10.1002/lno.11952
-
Schalko, I. , E. Wohl, H. Nepf. 2021. Flow and wake characteristics associated with large wood to inform river restoration. Sci Rep11, 8644. https://doi.org/10.1038/s41598-021-87892-7
-
Lei, J., D. Fan, A. Angera, Y. Liu, and H. Nepf. 2021. Drag force and reconfiguration of cultivated Saccharina latissima in current. Aquacultural Engineering 94, 102169. https://doi.org/10.1016/j.aquaeng.2021.102169
-
Xu, Y., and H. Nepf. 2021. Suspended sediment concentration profile in a Typha Latifolia Canopy. Water Resources Research, 57, e2021WR029902. https://doi.org/10.1029/2021WR029902
-
Follett, E., I. Schalko, and H. Nepf, H. 2021. Logjams with a lower gap: Backwater rise and flow distribution beneath and through logjam predicted by two-box momentum balance. Geophysical Research Letters, 48, e2021GL094279. https://doi.org/10.1029/2021GL094279
-
Yamasaki, T., B. Jiang, J. Janzen, and H. Nepf. 2021. Feedback between vegetation, flow, and deposition: a study of artificial vegetation patch development. J. Hydrology. https://doi.org/10.1016/j.jhydrol.2021.126232
-
Lei, J., and H. Nepf. 2021. Evolution of velocity from leading edge of 2D and 3D submerged canopies. J. Fluid Mech., vol. 916, A36, https://doi.org/10.1017/jfm.2021.197
-
Liu, C., Shan, Y., and Nepf, H. 2021. Impact of stem size on turbulence and sediment resuspension under unidirectional flow. Water Res. Res., 57, e2020WR028620, https://doi.org/10.1029/2020WR028620
-
Zhang, X., and H. Nepf. 2021. Wave-induced reconfiguration of and drag on marsh plants. J. Fluids Structures, Vol. 100, 103192, https://doi.org/10.1016/j.jfluidstructs.2020.103192
-
Xu, Y., and H. Nepf 2020. Measured and Predicted Turbulent Kinetic Energy in Flow through Emergent Vegetation with Real Plant Morphology. Water Res. Res., 56, e2020WR027892. http://doi.org/10.1029/2020WR027892
-
Follett, E., I. Schalko, and H. Nepf. 2020. Momentum and energy predict the backwater rise generated by a large wood jam. Geophys. Res. Lett., 47, e2020GL089346. https://doi.org/10.1029/2020GL089346