Publications


  • Zhang, X. and H. Nepf. 2024. Laboratory data linking the reconfiguration of and drag on individual plants to the velocity structure and wave dissipation over a meadow of salt marshes under waves with and without current, Earth Syst. Sci. Data, 16(2):1047-1062, https://doi.org/10.5194/essd-16-1047-2024.

  • Zhang X., C. Zhao, H. Nepf. 2024. A simple prediction of time-mean and wave orbital velocities in submerged canopy. J. Fluid Mech., 982:A3. doi:10.1017/jfm.2024.61

  • Liu, C., Y. Shan, L. He, F. Li, X. Liu, H. Nepf. 2024. Plant morphology impacts bedload sediment transport,Geo. Res. Lett. 51 (12), e2024GL108800,  https://doi.org/10.1029/2024GL108800

  • Schalko, I., H. Nepf. 2024. Enhanced flow variability and morphological changes through individual wood placements on a gravel bed, Geomorph., 453, 109135, https://doi.org/10.1016/j.geomorph.2024.109135

  • Follett, E., I. Schalko, H. Nepf. 2024 Reply to comment by Poppema & Wüthrich on Momentum and energy predict the backwater rise generated by a large wood jam, Geo.Res.Lett., 51, e2024GL108808 https://doi.org/10.1029/2024GL108808

  • Schaefer, R. and H. Nepf 2024. Movement of and drag force on slender flat plates in an array exposed to combinations of unidirectional and oscillatory flow, J. Fluids and Structures,124,104044, https://doi.org/10.1016/j.jfluidstructs.2023.104044

  • Schalko, I., M. Ponce, S. Lassar, S. Schwindt., S. Haun and H. Nepf. 2024. Flow and Turbulence due to Wood Contribute to Declogging of Gravel Bed. Geophysical Research Letters, 51, e2023GL107507. https://doi.org/10.1029/2023GL107507

  • Beltrán -Burgos, M., C. Esposito, H. Nepf, M. Baustian, D. Di Leonardo. 2023. Vegetation-driven seasonal sediment dynamics in a freshwater marsh of the Mississippi River Delta. JGResearch- Biogeosciences, 128, e2022JG007143. https://doi.org/10.1029/2022JG007143

  • Deitrick A., E. Hovendon, D. Ralston and H. Nepf, 2023. The influence of vegetation-generated turbulence on deposition in emergent canopies. Front. Mar. Sci. 10:1266241.doi:10.3389/fmars.2023.1266241

  • Schalko, I., Follett, E., & Nepf, H. 2023. Impact of lateral gap on flow distribution, backwater rise, and turbulence generated by a logjam. Water Resources Research, 59, e2023WR034689. https://doi.org/10.1029/2023WR034689.

  • Xavier, M.., Janzen, J. and Nepf, H. 2023. Modeling mass removal and sediment deposition in stormwater ponds using floating treatment islands: a computational approach. Environ Sci Pollut Res 30, 112173–112183. https://doi.org/10.1007/s11356-023-30218-z

  • Lei, J., R. Schaefer, P. Colarusso, A. Novak, J. Simpson, P. Masque, H. Nepf. 2023. Spatial heterogeneity in sediment and carbon accretion rates within a seagrass meadow correlated with the hydrodynamics intensity. Science of the Total Environment 854, https://doi.org/10.1016/j.scitotenv.2022.158685

  • Xu, Y., L. Danxun, and H. Nepf. 2022. Sediment pickup rate in bare and vegetated channels. Geophys. Res. Lett., 49 e2022GL101279, https://doi.org/10.1029/2022GL101279

  • Zhang, X., P. Lin, H. Nepf. 2022. A wave damping model for flexible marsh plants with leaves considering linear to weakly non-linear wave conditions. Coastal Engineering 175:104124, https://doi.org/10.1016/j.coastaleng.2022.104124

  • Yamasaki, T., C. Walker, J. Janzen, H. Nepf 2022. Flow distribution and mass removal in floating treatment wetlands arranged in series and spanning the channel width. J. Hydro-environment Rese. 44:1-11, https://doi.org/10.1016/j.jher.2022.07.001

  • Liu, C., C. Yan, S. Sun, J. Lei, H. Nepf, and Y. Shan 2022. Velocity, turbulence, and sediment deposition in a channel partially filled with a Phragmites australis canopy. Water Resources Research, 58, e2022WR032381. https://doi.org/10.1029/2022WR032381

  • Xu, Y., C. Esposito, M. Beltrán Burgos, and H. Nepf. 2022. Competing effects of vegetation density on sedimentation in deltaic marshes. Nature Communications, 13:4641, https://doi.org/10.1038/s41467-022-32270-8

  • Zhang, X. and H. Nepf. 2022. Reconfiguration of and drag on marsh plants in combined waves and current. J. Fluids Structures, Vol. 110, 103539. https://doi.org/10.1016/j.jfluidstructs.2022.103539

  • Nepf, H., S. Puijalon, H. Capra. 2022. Organism-scale interaction with hydraulic conditions, J. Ecohydraulics, 7:1, 1-3. https://doi.org/10.1080/24705357.2022.2042919

  • Schaefer, R. and H. Nepf. 2022. Wave damping by seagrass meadows in combined wave-current conditions. Limnology and Oceanography, 67, 1554-1565. https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lno.12102

  • Schaefer, R. and H. Nepf. 2022. Flow Structure in an Artificial Seagrass Meadow in Combined Wave-Current Conditions. Front. Mar. Sci. 9:836901. https://doi.org/10.3389/fmars.2022.836901

  • Zhao, T. and H. Nepf .2021. Turbulence Dictates Bedload Transport in Vegetated Channels Without Dependence on Stem Diameter and Arrangement. Geophysical Research Letters, 48, e2021GL095316. https://doi.org/10.1029/2021GL095316

  • Zhang, X., and H. Nepf 2021. Wave damping by flexible marsh plants influenced by current. Phys.Rev.Fluids 6, 100502. https://doi.org/10.1103/PhysRevFluids.6.100502

  • Zhang, X. P. Lin, and H. Nepf 2021. A simple wave damping model for flexible marsh plants. Limnology and Oceanography 66 (12), 4182-4196. https://doi.org/10.1002/lno.11952

  • Schalko, I. , E. Wohl, H. Nepf. 2021. Flow and wake characteristics associated with large wood to inform river restoration. Sci Rep11, 8644. https://doi.org/10.1038/s41598-021-87892-7

  • Lei, J., D. Fan, A. Angera, Y. Liu, and H. Nepf. 2021. Drag force and reconfiguration of cultivated Saccharina latissima in current. Aquacultural Engineering 94, 102169. https://doi.org/10.1016/j.aquaeng.2021.102169

  • Xu, Y., and H. Nepf. 2021. Suspended sediment concentration profile in a Typha Latifolia Canopy. Water Resources Research, 57, e2021WR029902. https://doi.org/10.1029/2021WR029902

  • Follett, E., I. Schalko, and H. Nepf, H. 2021. Logjams with a lower gap: Backwater rise and flow distribution beneath and through logjam predicted by two-box momentum balance. Geophysical Research Letters, 48, e2021GL094279. https://doi.org/10.1029/2021GL094279

  • Yamasaki, T., B. Jiang, J. Janzen, and H. Nepf. 2021. Feedback between vegetation, flow, and deposition: a study of artificial vegetation patch development. J. Hydrology. https://doi.org/10.1016/j.jhydrol.2021.126232

  • Lei, J., and H. Nepf. 2021. Evolution of velocity from leading edge of 2D and 3D submerged canopies. J. Fluid Mech., vol. 916, A36, https://doi.org/10.1017/jfm.2021.197

  • Liu, C., Shan, Y., and Nepf, H. 2021. Impact of stem size on turbulence and sediment resuspension under unidirectional flow. Water Res. Res., 57, e2020WR028620, https://doi.org/10.1029/2020WR028620

  • Zhang, X., and H. Nepf. 2021. Wave-induced reconfiguration of and drag on marsh plants. J. Fluids Structures, Vol. 100, 103192, https://doi.org/10.1016/j.jfluidstructs.2020.103192

  • Xu, Y., and H. Nepf 2020. Measured and Predicted Turbulent Kinetic Energy in Flow through Emergent Vegetation with Real Plant Morphology. Water Res. Res., 56, e2020WR027892. http://doi.org/10.1029/2020WR027892

  • Follett, E., I. Schalko, and H. Nepf. 2020. Momentum and energy predict the backwater rise generated by a large wood jam. Geophys. Res. Lett., 47, e2020GL089346. https://doi.org/10.1029/2020GL089346